Влажность является одним из главных физических свойств древесины. Изменение влажности ниже предела гигроскопичности ( 26 – 30 % ) приводит к изменению геометрических размеров и формы пиломатериалов, увеличиваются механические свойства древесины, и при этом улучшаются технологические и эксплуатационные характеристики.
Древесина – гигроскопичный материал и при изменении параметров среды ( температуры и относительной влажности воздуха ), может изменять свою влажность, например усыхать, что приводит к изменению размеров и даже формы детали из древесины. А если эта деталь является элементом готового изделия, то может произойти разрушение элемента и изделия в целом. Поэтому целью сушки является высушивание древесины до равномерного состояния с будущими условиями эксплуатации.
Таким образом, требование к формо- и размероустойчивости изделий из древесины является основой назначения конечной влажности высушиваемых пиломатериалов.
В связи с этим, вопросы точности измерения влажности носят нетривиальный характер и проблем здесь больше, чем кажется на первый взгляд.
Влажность древесины может определяться тремя методами:
- Рабочий метод
- Контрольный метод
- Ускоренный сушильно-весовой
Первый из перечисленных методов проводится с использованием электровлагомеров. Два других метода представляют собой сушильно-весовой способ измерения влажности, однако, контрольный метод проводится при температуре 103±2 ºC.
Можно утверждать, что эталонным методом является контрольный способ измерения влажности. Сущность этого способа – определение массы влаги, удаляемой из древесины при высушивании ее до абсолютно сухого состояния. Влажность при этом определяется по формуле:
W = ( Мн – Мо ) / Мо * 100 ( 1 )
Где Мн – начальная масса
Мо – масса в абсолютно сухом состоянии.
Так как масса влаги – это разность между начальной массой и массой в абсолютно сухом состоянии, то предыдущая формула может иметь следующий вид:
W = Мвл / Мо * 100 ( 2 )
Где Мвл – масса влаги.
К достоинствам данного метода относится точность, которая будет зависеть лишь от точности измерения массы, к недостаткам – длительность получения результата, необходимость нарушения целостности сортимента ( вырез секции влажности ) и др.
Использование же влагомеров, основанных на измерении влажности в зависимости от электрических свойств, дает возможность быстро, не разрушая древесину, определить ее влажность.
Однако, вопросы точности измерений часто являются предметом споров и непонимания спорящих. Попробуем разобраться, от чего же зависит точность измерения влажности с помощью электровлагомеров.
Различают два вида влагомеров: игольчатые, основанные на измерении электрического сопротивления и так называемые емкостные влагомеры ( иногда их называют бесконтактными ), основанные на зависимости диэлектрической проницаемости от влажности. С помощью этого метода созданы влагомеры с датчиками, не требующими внедрения игл в древесину. Следовательно, после измерений не остается даже следа на поверхности древесины, что, с одной стороны, выгодно отличает их от игольчатых влагомеров.
Итак, не вдаваясь в особенности и сложности измерения тех или иных электрических величин, рассмотрим, как же влияют характеристики самой древесины на точность определения влажности древесины.
Обратимся еще раз к формуле ( 2 ) и запишем ее в ином виде – для секции влажности, имеющей объем 1, т. е., например, 1 см³ и 1 дм³, тогда массу в абсолютно сухом состоянии можно записать в следующем виде:
Мо = Vо * Ро ( 3 )
Где Vо = 1,0, или,
Мо = Ро ( 4 )
И формула ( 2 ) примет вид:
W = Мвл / Ро * 100 ( 5 )
Таким образом, любой влагомер косвенно определяет числитель формулы, т. е. Мвл, далее вводится коррекция на плотность ( через устанавливаемую поправку на породу древесины, а в некоторых приборах через значение плотности ), и на дисплее высвечивается значение влажности в процентах и даже с десятыми долями.
Следовательно, значение плотности древесины имеет решающее значение при определении влажности.
Элементарный анализ формулы ( 5 ) показывает, что более плотная древесина содержит в измеряемом объеме и большее количество влаги при одинаковой влажности с менее плотной древесиной. Например, при влажности 10%, у древесины с плотностью 400 единиц будет 40 единиц влаги. При той же влажности, но для древесины с плотностью 500 единиц, влаги содержится примерно 50 единиц. Поэтому, измеряя на одной и той же поправке, например, соответствующей плотности 400 кг / м³, для первого измерения показания будут примерно равны 10%, а для второго – 12,5%.
Следует отметить, что плотность древесины даже в пределах одной породы, например сосны, сильно колеблется, даже в пределах одного района произрастания и даже в пределах одного дерева и одной доски. Об этом необходимо помнить, когда мы измеряем влажность электровлагомерами.
Как же правильно подобрать поправку влагомера? Для этого можно использовать два способа:
- Определить в лабораторных условиях среднюю плотность древесины в абсолютно сухом состоянии, для района произрастания. По полученному значению плотности найти в паспорте влагомера соответствующую поправку. В некоторых типах влагомеров непосредственно устанавливается плотность.
- Произвести имеющимся влагомером измерения влажности в одних и тех же точках ( зонах досок ), но на разных поправках. Далее определить влажность весовым способом. После сравнения показаний электровлагомера и результатов контрольного метода подобрать поправку, которая даст наименьшую погрешность.
Таким образом, на предприятиях, занимающихся деревообработкой, в обязательном порядке должна быть лаборатория, оснащенная как минимум сушильным шкафом с терморегулятором и весами для измерения масс до 250 – 500 г с погрешностью измерения ± 0,1 г.
Итак, нашли поправку по плотности соответствующую району произрастания. В этом случае мы можем избежать систематической ошибки, т. е., в среднем, занижения или завышения влажности. Вместе с тем, проводя достаточно большое количество измерений на одной доске и выбирая случайно несколько досок, мы можем с некоторой долей вероятности судить лишь о среднем значении влажности в партии. Будет наблюдаться разброс данных от средней величины, т. е. экстремальные значения с очень низкой и очень высокой влажностью. Это часто не значит, что доски сильно недосушены или пересушены. Необходимо обратить внимание на особенности строения данных участков досок или досок в целом, т. е. на плотность, смолистость и т. п., что влияет на показания влагомеров.
Таким образом, только набирая опыт определения влажности и изучая особенности структуры древесины, можно правильно оценивать показания влагомеров.
Сравнивать между собой точность показаний влагомеров можно, если достигнуты сопоставимые условия:
- Одинаковая поправка по плотности, а не просто по породе
- Одинаковая площадь и глубина сканирования ( для емкостных влагомеров )
- Одинаковая глубина для игольчатых влагомеров
- Одинаковые условия окружающей среды
- Одни и те же участки измерения
- Один и тот же метод измерения ( кондуктометрический – игольчатый или емкостной ).
И еще один момент, нельзя сравнивать показания игольчатых влагомеров с емкостными.
Относительно области применения емкостных и игольчатых влагомеров можно сказать, что те и другие имеют право на существование. В определенных случаях только один тип влагомера может применяться эффективно. Например, при определении перепада влажности по толщине пиломатериалов хорошие результаты дает игольчатый влагомер, при этом иглы должны быть длиной не менее 30 – 40 мм и измерять лишь кончиками ( 5 мм ), остальная часть игл должна быть заизолирована.
При определении перепада влажности обработанных заготовок или элементов готовых изделий – только емкостной влагомер.
Сравнивая эффективность обычных игольчатых влагомеров ( без изолированных игл ) с емкостными, используемыми для определения средней влажности досок и заготовок, предпочтение все же следует отдать емкостным, как более универсальным, измеряющим большие объемы древесины легко и быстро.
Относительно цены влагомеров. При выборе того или иного влагомера необходимо учитывать следующие факторы:
- Количество поправок ( чем больше поправок, т. е. шире диапазон, тем точнее можно определить влажность, тем дороже влагомер )
- Чем больше площадь и глубина сканирования для емкостных влагомеров, тем дороже влагомер.
- Чем глубже сканирование игольчатым влагомером, тем дороже влагомер.
- Наличие копровых механизмов забивания плюс наличие изолированных длинных игл, тем более с направляющими аппаратами для длинных игл ( против частой поломки ) делает дороже прибор.
В заключении отметим, что проблема влагометрии более емкая, в данной статье затронуты лишь «верхушки айсберга».